
Ordering Code

<u>CC</u>	<u>0805</u>	<u>Y</u>	<u>104 Z</u>	<u>160</u>
(1)	(2)	(3)	(4) (5)	(6)

(1)	(2)	(4)	(5)
Style	Chip Size: L×W	Capacitance	Tolerance
CC: MLCC	0201=0.02×0.01"	in pF,the first two digits are	A: ±0.05pf H: ±3%
	0402=0.04×0.02"	significant digits and the	B: ±0.10pf J: ±5%
	0603=0.06×0.03"	last digits gives the no.of	C: ±0.25pf K: ±10%
(3)	0805=0.08×0.05" 1206=0.12×0.06" 1210=0.12×0.10"	zeros. Example : 0=×1 270=27pF	D: ±0.50pf M: ±20% F: ±1% Z:+80/-20%
Dielectric Material	1808=0.18×0.08"	1=×10 271=270pF	G: ±2% E: ±1pf
N : NP0 X : X7R Y : Y5V Z : Z5U	1812=0.18×0.12"	2=×100 272=2.7nF 3=×1000 273=27nF 4=×10000 274=270nF 5=×100000 275=2.7 μF	Note: A,B,C,D:for<10pF NPO:ALL Tolerance X7R/X5R:J,K,M Z5U/Y5V/Y5U : M,Z
U : Y5U		6=×1000000 276=27 μ F	
B : X5R			
S : X6S			

(6)
Rated Voltage
16V=160
25V=250
50V=500
100V=101
200V=201
500V=501
1KV=102
3KV=302
10V=100
250V=251
2KV=202
63V=630
630V=631

Chip Capacitor Structure & dimension

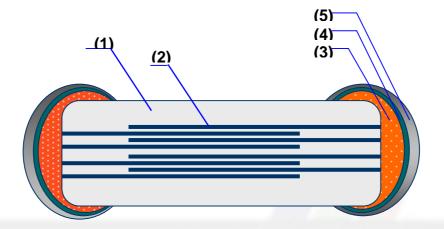
Size	L	W	e	g(min)
	Length inch (mm)	Width inch (mm)	Termination inch (mm)	Insulation inch (mm)
0402	0.04±0.002	0.02±0.002	0.0059~0.0118	0.0157
	(1.0±0.05)	(0.5±0.05)	(0.15~0.3)	(0.4)
0603	0.063±0.004	0.032±0.003	0.0079~0.0196	0.0196
	(1.6±0.1)	(0.8±0.1)	(0.2~0.5)	(0.6)
0805	0.079±0.006	0.049±0.006	0.0098~0.0276	0.0591
	(2.0±0.15)	(1.25±0.15)	(0.25~0.65)	(0.7)
1206	0.126±0.006	0.063±0.006	0.0098~0.0295	0.0787
(C<10uF)	(3.2±0.15)	(1.6±0.15)	(0.25 ~0.75)	(1.7)
1206	0.126±0.008	0.063±0.008	0.0098~0.0295	0.0787
(C 10uF)	(3.2±0.2)	(1.6±0.2)	(0.25 ~0.75)	(1.7)
1210	0.126±0.012	0.098±0.008	0.0118 ~0.0295	0.0787
	(3.2±0.3)	(2.5±0.2)	(0.3~0.75)	(1.7)
1808	0.177±0.012	0.079±0.008	0.0098~0.0381	0.1176
	(4.5±0.3)	(2.0±0.2)	(0.25~0.97)	(2.5)
1812	0.177±0.012	0.126±0.008	0.0098~0.0381	0.1176
	(4.5±0.3)	(3.2±0.2)	(0.25~0.97)	(2.5)

	Code	Thickness
0402	S	0.50mm±0.05mm
0603	S	0.80mm±0.10mm
0805/1206	Α	0.6 mm±0.1mm
0805/1206	В	0.8 mm±0.1mm
0805/1206/1210	С	1.0 mm±0.1mm
0805/1206/1210/1812	D	1.15 mm±0.1mm
0805/1206/1210/1812	E	1.25 mm±0.1mm
1206 ^{Note1} /1210/1808/1812	F	1.60 mm±0.15mm
1210/1812	G	1.90 mm±0.15mm
1210/1812	н	2.10 mm±0.15mm
1210	Т	> 2.25mm (Max2.8mm)
1812	Т	> 2.25mm (Max3.2mm)
0805/1206	К	< 0.6mm

*Note1: For 1206 size, If C 10uF, the thickness is 1.70 mm±0.2mm

CLASS	Class I											
T.C.						NPO						
SIZE		0402			0603			0805			1210	
RV	16V	25V	50V	16V	25V	50V	16V		50V	50V	50V	
0.47P-0.82P		S	S	S	S	S	A	A	A			
1.0P-1.8P		S	S	S	S	S	A	A	A	В		
2.0P		S	S	S	S	S	-	<u> </u>	<u> </u>			
2.2P		S	S	S	S	S	A	A	A	B		
2.7P		S	S	S	S	S	A	<u>A</u>	<u>A</u>	B		
3.3P		S	S	S	S	S	A	A	A	B		
3.9P		S	S	S	S	S	A	<u>A</u>	A	B		
4P		S S	S S	S S	S S	S S	A	<u>A</u>	<u>A</u>	B		
4.7P 5P. 5.6P		<u> </u>	S	S	S	S	A	A	A	B		
6P. 6.8P.7P		S	S	S	S	S	Â	Â	Â	B		
8P		S	S	S	S	S	Â	Â	Â	B		
8.2P		S	S	S	S	S	Â	Â	Â	B		
10P		Š	S	Š	Š	Š	Â	Â	Â	B		
12P		Š	Š	Š	Š	Š	Â	Â	Â	B		
12F 15P		S	S	S	S	S	Â	Â	Â	B		
16P		S	S	S	S	S	Â	Â	Â	- <u>-</u>		
18P		Š	Š	Š	Š	Š	Â	Â	Â	в		
20P		Š	Š	Š	Š	Š	Â	Â	Â	B		
22P		Š	Š	Š	Š	Š	Â	Â	Â	B		
24P				Š	Š	Š	A	A	A			
27P		S	S	S	S	S	A	A	A	В		
30P		Š	Š	Š	Š	Š	A	A	A	B		
33P	S	S	S	S	S	S	Α	Α	Α	В		
39P		S	S	S	S	S	A	Α	Α	В		
43P		S	S	S	S	S	Α	Α	Α	В		
47P		S	S	S	S	S	Α	Α	Α	В		
51P			S									
56P		S	S	S	S	S	A	Α	A	В		
68P		S	S	S	S	S	Α	Α	Α	В		
75P			S	S	S	S	A	A	A			
82P		S	S	S	S	S	A	A	A	В		
100P		S	S	S	S	S	A	A	A	В		
120P		S	S	S	S	S	A	A	A	B		
150P		S	S	S	S	S	A	A	A	В		
160P		S	S	S	S	S	A	A	A	В		
180P		S	S	S	S	S	A	A	A	B		
220P		S	S	S	S	S	A	A	A	B		
270P		S		S	S	S	A	<u>A</u>	<u>A</u>	В		
300p				S	S	S	A	<u>A</u>	A	-		
330P				S	S	S	A	<u>A</u>	<u>A</u>	B		
390P				S	S	S	A	A	A	В		
410P				6	6	S	-	-	-		<u> </u>	
470P 560P				S	S S	S	<u>A</u>	<u>A</u>	<u>A</u>	B		
680P				S S	S	S S	B	B	B	B		
820P				S	S	S	B	B	B	B		
1.0n				5 5	S	5 5	B	B	B	B		
1.0n 1.2n				5 5	S	5 5	B	B	B	B		
1.2n 1.5n				S	5	S	B	B	B	B		
1.9n				S	3	3	E	E	E	B		
2.2n				S		s	E	E	E	B		
2.20 2.7n				S		3	E	E	E	B		
3.3n				S			E	E	┝╺┺──	B		
3.9n				3			E	E		B		
4.7n							E	E	E	B		
5.6n								┝╺┺──	┝┺─	E		
					I	I	<u> </u>	I				
							F		1	F	I	
6.8n 8.2n							E			E		

CLASS	Class II													
CLASS T.C.	X7R													
TYPE	<u> </u>													
SIZE		04	02				0603					0805		
RV	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V
22P	S	S	S	S	S	S	S	S						
27P	S	S	S	S	S	S	S	S	S					
47P	S	S	S	S	S	S	S	S	S					
100P	S	S	S	S	S	S	S	S	S		В	В	В	В
120P	S	S	S	S	S	S	S	S	S		В	В	В	В
150P	S	S	S	S	S	S	S	S	S		В	В	В	В
180P	S	S	S	S	S	S	S	S	S		В	В	В	В
200P	S	S	S	S	S	S	S	S	S		В	В	В	В
220P	S	S	S	S	S	S	S	S	S		В	В	В	В
270P	S	S	S	S	S	S	S	S	S		B	B	B	B
330P	S	S	S	S	S	S	S	S	S		B	B	B	B
390P	S	S	S S	S S	S S	S	S S	S	S		B	B	B	B
470P	S	S				S		S	S		B	B	B	B
560P 680P	S S	S S	S S	S S	S S	S S	S S	S S	S S		B	BB	B	BB
820P	5 5	5 5	5 5	5	5	5 5	5	5 5	5 5		В	В	В	В
1.0n	5	5 5	5 5	5	5	S	5	5	5		В	B	B	B
1.0n	S	S	S	S	S	S	S	S	S		B	B	B	B
1.5n	s	s	s	s	s	s	s	s	s		B	B	B	B
1.7n	s	S	s	s	s	s	s	S	S		B	B	B	B
1.8n	S	S	S	S	S	S	S	S	S		В	В	В	B
1.8n	S	S	S	S	S	S	S	S	S		В	В	В	В
2.2n	S	S	S	S	S	S	S	S	S		В	В	В	В
2.7n	S	S	S	S	S	S	S	S	S		В	В	В	В
3.3n	S	S	S	S	S	S	S	S	S		В	В	В	В
3.9n	S	S	S	S	S	S	S	S	S		В	В	В	В
4.7n	S	S	S		S	S	S	S	S		В	В	В	В
5.6n	S	S	S	S	S	S	S	S	S		В	В	В	В
6.8n	S	S	S		S	S	S	S	S		В	В	В	В
8.2n	S	S			S	S	S	S	S		В	В	В	В
10n	S	S	S		S	S	S	S	S		B	B	B	B
12n	S	S			S	S	S	S	S		B	B	B	B
15n	S	S			S	S	S	S	S		B	B	B	B
18n	S	S S	s		S S	S S	S S	S S	S S		B	B	B	B
22n 27n	S S	3	3		5	S	5	5	S		B	BB	B	BB
33n	S				S	S	S	S	S		B	B	B	B
39n	S				S	S	S	S	S		B	B	B	B
47n	S				S	S	S	S	S		B	B	B	B
56n	<u> </u>				s	S	Š	Š	s		B	B	B	B
68n					s	S	s	S	s		B	B	B	E
82n					S	S	S	S			B	B	B	B
100n	s	s			S	S	S	S	s		В	B	E	B
120n					S	S	S				В	В		В
150n					S	S	S				В	В	E	В
180n					S	S					D	В		
220n					S	S	S				D	E	E	E
270n											В	В		
330n	L					S					E	E	E	E
390n	 										E	E		
470n					S	S	S	S			E	E	E	
560n												E		
680n											D	E	-	
820n	 				6						E	E	E	
1.0u	<u> </u>				S					E	E	E	E	
1.2u	<u> </u>				 							<u> </u>		
1.5u 1.8u	<u> </u>													
2.2u	<u> </u>				<u> </u>						E	E		
4.7u											_ E			
10u	<u> </u>				l —		l —					<u> </u>		


CLASS		Class II X7R											
т.с.						X7	/R						
ТҮРЕ	_	4000 4010 4010											
SIZE			1206				1210			1808	1812		
RV	6.3V	10V	16V	25V	50V	16V	25V	50V	50V		50V		
100P	_				L	L	L	L	L				
120P						<u> </u>		<u> </u>	<u> </u>				
150P					<u> </u>	<u> </u>	<u> </u>	<u> </u>					
180P 220P	_	в	в	- D	- D	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
270P		BB	B	B	B		<u> </u>	<u> </u>					
330P		B	B	B	B	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
390P		B	B	B	B	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
470P		B	B	B	B								
560P		B	B	B	B								
680P		В	В	В	В								
820P		В	В	В	в								
1.0n		В	В	В	В								
1.2n		В	В	В	В								
1.5n		В	В	В	В								
1.8n		В	В	В	В								
2.2n		В	В	В	В								
2.7n		В	В	В	В								
3.3n		В	В	В	В								
3.9n		В	В	В	В	L	L	L	L				
4.7n		В	В	В	B								
5.6n	_	B	B	B	B	<u> </u>		<u> </u>	<u> </u>				
6.8n		B	B	B	B	<u> </u>		 	<u> </u>				
8.2n	_	B	B	B	B	<u> </u>		<u> </u>	<u> </u>				
10n	_	B	B	B	C	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
12n 15n		B	BB	B	BB	<u> </u>		<u> </u>	<u> </u>				
18n		B	B	B	B	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
22n		B	B	B	B								
27n		B	B	B	B	<u> </u>			<u> </u>				
33n		B	B	B	B								
39n		B	B	B	B								
47n		B	B	B	B								
56n		В	В	В	В								
68n		В	В	В	В								
82n		В	В	В	В								
100n		В	В	В	В						С		
120n		В	В	В	В						С		
150n		В	В	В	D						С		
180n		В	В	В	D						С		
220n	_	В	В	В	D						С		
270n	_	B	B	D		 		 	 				
330n		B	B	D	В						c		
390n	_	B	B	D	-						C		
470n		B	P B	C	E	<u> </u>	<u> </u>	<u> </u>	<u> </u>		F		
560n		B	D	В	<u> </u>	<u> </u>		<u> </u>	<u> </u>				
680n 820n		B	D			<u> </u>		<u> </u>	<u> </u>				
320n 1.0u		D	E	E	F			E			F		
1.0u 1.2u		D			-								
1.5u		D			<u> </u>								
1.8u		D				<u> </u>	l —	<u> </u>	<u> </u>				
2.2u		D	F	F									
4.7u		F	F	<u> </u>		G	G						
10u	F		<u> </u>			<u> </u>	<u> </u>						
			İ	İ									

CLASS								-															
												lass											
T.C.												X5R											
ТҮРЕ																		210 1812					
SIZE		0402			06				08				12					10					
RV	6.3V	10V	16V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V
100P					<u> </u>											<u> </u>	<u> </u>						
120P					<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>				
150P																<u> </u>	<u> </u>	<u> </u>					
180P	+				<u> </u>												<u> </u>	<u> </u>	<u> </u>				<u> </u>
220P					<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>				
270P 330P					<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>				
330P 390P	+				<u> </u>										<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
470P	+				<u> </u>											<u> </u>	<u> </u>						
560P	+				<u> </u>										<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
680P	+																						
820P	+																						
1.0n	+																						
1.2n	1																						
1.5n																							
1.8n																							
2.2n	1																						
2.7n		_									_									_	_	_	
3.3n																							
3.9n																							
4.7n																							
5.6n																							
6.8n																							
8.2n																							
10n																							
12n	<u> </u>																						
15n	<u> </u>																						
18n																							
22n																							
27n		S	S														<u> </u>						
33n	+	S	S		<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>
39n 47		S	S S		<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>				
47n 56n		S S	5				S									<u> </u>	<u> </u>	<u> </u>					
50N 68N	+	S			<u> </u>		S										<u> </u>	<u> </u>	<u> </u>				
		S					S								<u> </u>	<u> </u>							
82n 100n	s	S			<u> </u>		S								<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
120n	S	- J				s	S											<u> </u>	<u> </u>				
150n	S					S	S																
180n	s					S	S																
220n	S			S	S	S	-																
270n	1			S	S	S																	
330n				S	S	S																	
390n																							
470n	S			S	S	S																	
560n				S	S										E								
680n				S	S					Ε					E								
820n				S	S										E								
1.0u	S			S	S	S		E	E	E													
1.2u				S																			
1.5u	1			S																			
1.8u	1			S																			
2.2u				S				D	E					D									
3.3u	<u> </u>							_	E					F									
4.7u				S				E	E				F	F	F				T				
10u								E				G	F	G	F		G	Н	T				F
22u								E				G				T		T					

CLASS	class II														
T.C.							_	Y5V		_					
TYPE															
SIZE			0402					0603					0805		
RV	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V
1n							S	S	S	S					
10n		S	S	S	S		S	S	S	S		Α	Α	Α	В
12n		S	S	S			S	S	S	S		Α	Α	Α	A
15n		S	S	S			S	S	S	S		Α	Α	Α	A
18n		S	S	S			S	S	S	S		Α	Α	Α	A
22n		S	S	S			S	S	S	S		Α	Α	Α	A
27n		S	S				S	S	S	S		Α	Α	Α	Α
33n		S	S				S	S	S	S		Α	Α	Α	A
39n		S	S				S	S	S	S		Α	Α	Α	A
47n		S	S				S	S	S	S		Α	Α	Α	Α
56n		S	S				S	S	S	S		Α	Α	Α	Α
68n		S	S				S	S	S	S		Α	Α	Α	Α
82n		S	S				S	S	S	S		Α	Α	Α	Α
100n		S	S				S	S	S	S		Α	Α	Α	Α
120n							S	S	S			Α	Α	Α	Α
150n							S	S	S			В	В	В	В
180n							S	S	S			В	В	В	В
220n		S					S	S	S			в	В	в	D
270n							S	S	S			Е	Е	Е	Е
330n							S	S	S			Е	Е	Е	Е
470n							S	S	S			Е	Е	Е	Е
680n							S	S				Е	Е	Е	
1.0u	S						S	S				Е	Е	Е	Е
1.2u												Е	Е		
1.5u												Е	Е		
1.8u												Е	Е		
2.2u						S	S					Е	Е	D	
2.7u												Е			
3.3u												Е			
3.9u															
4.7u												Е	Е		
5.6u															
6.8u															
8.2u															
10u											Е	Е			
12u								L	L						
15u															
18u															
22u	ļ														

CLASS						C	Class II					
T.C.							Y5V					
TYPE												
SIZE			12	06					1210			1812
RV	6.3V	10V	16V	25V	35V	50V	10V	16V	25V	35V	50V	
10n		В	В	В	В	В						
12n		В	В	В	В	В						
15n		В	В	В	В	В						
18n		В	В	В	В	В						
22n		в	В	В	В	В						
27n		в	В	В	В	В						
33n		в	В	В	В	В						
39n		в	В	в	В	в						
47n		в	В	В	В	В						
56n		в	В	В	В	В						
68n		в	в	В	В	В						
82n		В	В	В	В	В						
100n		в	В	В	В	В	D	D	D	D	D	
120n		В	В	В	В	В	D	D	D	D	D	
150n		в	в	в	в	В	D	D	D	D	D	
180n		в	В	В	в	В	D	D	D	D	D	
220n		в	В	В	В	В	D	D	D	D	D	
270n		в	В	В	В	В	D	D	D	D	D	
330n		в	В	В	в	В	D	D	D	D	D	
470n		в	В	В	в	В	D	D	D	D	D	
680n		С	С	С	D	D	D	D	D	D	D	
1.0u		С	D	D	D	D	D	D	D	D	D	
1.2u		D	D	D			D	D	D	D	D	
1.5u		D	D	D			D	D	D	D	D	
1.8u		D	D	D			D	D	D	D	D	
2.2u		D	D	D	Е	Е	D	D	D	D	D	
2.7u		D	D				D	D	D			
3.3u		D	D	Е			D	D	D			
3.9u		D	D				D	D	D			
4.7u		F	F	F	F		D	D	F			
5.6u		F					D	D				
6.8u		F					D	D				
8.2u		F					D	D				
10u		F	F				D	н	F	F		
12u							G					
15u							G					
18u							G					
22u		F	F				G	G				
47u	F						G					

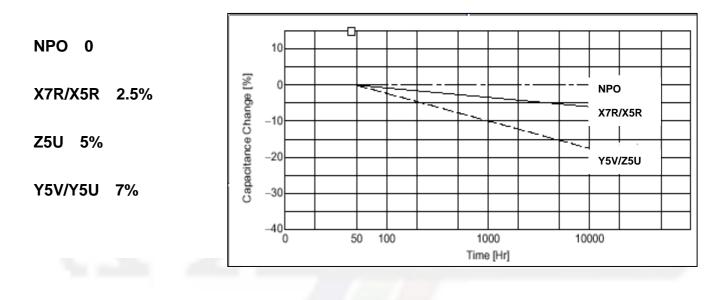
Inside structure and material

No.	Name	Material							
	Hamo	Class 1	Class 2						
(1)	Dielectric	TiO ₂	BaTiO ₃						
(2)	Electrode	Ag/Pd or Ni							
(3)		Ag or Ag/Pd or Cu							
(4)	Termination	Ν	Ni						
(5)		Sn							

Dielec	tric Material		
Material Tolerance		Characteristics	Application
NPO (COG)	 A,B,C,D,E,F,G J,K prefered 	Class I Low K dielectric : extremely stable in capacitance regardless of time and temperature change, With Iow dielectric loss and small tolerance on nominal capacitance.	Precision timing circuits, high frequency noise filtering impedance matching, ESD Limiting.
X7R X5R	1) J 2) K,M prefered	Class II middle K dielectric: allowing higher capacitance than Class I dielectric in less stable frequency, voltage, and temperature condition.	Noise filtering, frequency discrimination, by-pass and decoupling in radio receivers, audio tone, and computer serve system.
Z5U Y5V Y5U	1) M,Z prefered	Class II High K dielectric: allowing high capacitance density as a replacement of tantalum, aluminum electrolytic capacitor.	Low frequency noise by-pass and high speed power decoupling application.

Capacitor Classification

Classification of ceramic based capacitor


By refer to EIA standard, ceramic capacitors are break down into three categories:

- CLASS I: COG(NPO), also called "temperature compensation" type, It is temperature stable or compensating device, it shows very little or no changes in capacitance as temperature change, suitable for timing, impedance matching, ESD/EMI limiting.
- CLASS II: X7R,X5R,Z5U,Y5V, also called "high K" type, those material present greater capacitance change than class I type, a variety of dielectric materials are available thus the amount of capacitance change is to be defined from vendor to vendor.
- CLASS III: is semiconductor type which exhibit capacitance change similar to class II, however, this type is very rare in consumer application.

Aging Phenomenon

What is aging of class II ceramic (change of capacitance over time) Aging is the Shelf-Loss in capacitance that occurs over time and is a normal process of class II ceramic capacitors, because of the re-ordering of crystalline structure When a class II ceramic body is cool from its Curie Point @150 and without voltage applied, then the aging starts under a given ratio designated by vendor.

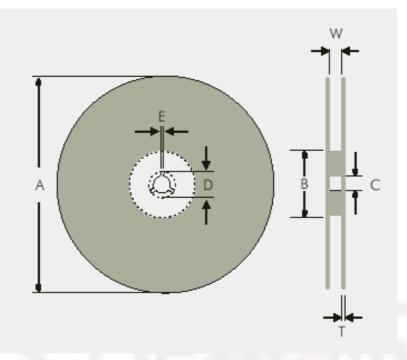
The average aging ratio (per 10^{*} time decade)

Recovery of aging

- 1) heat up to device at 150 or above, the higher temperature the less time required.
- 2) Voltage slows very much the aging behaviors of class II ceramic capacitor.

Handle guidelines of aging part

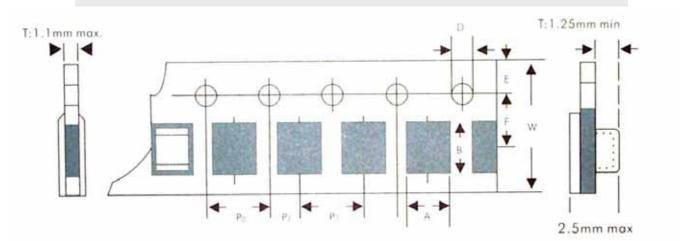
- 1) The aging parts will not lead to any reliability issue, but capacitance out from its lower limit which might be observed prior to production.
- 2) After de-aging process, the parts would back to its initial designated level of capacitance characteristic and another aging cycle begins when parts putting back to the storage shelf.
- 3) Typically, a process of IR-reflow or wave soldering can easily re-cure the aging part since it all working at much higher temperature than 150 , even few seconds dwelling time is far enough for staying at such 210 ~260 range.
- 4) Re-measurement of de-aging parts, must to wait at least 24 hours at room temperature. While the part has cool down, then the capacitance is stable and shall be well within its normal limit.


TESTS AND REQUIREMENTS

ltem		Condition of test				e of requirement	
Operating			NPO:-55 ~125				
Temperature				X7R:-5	5 ~125		
				X5R:-5	5 ~85		
			Z5U:+1	10 ~85			
				Y5V/Y5	5U:-30 ~85		
Capacitance	NPO: 10	00pF,F=1MHz,V=1.0±0.2Vrms		Within	specified tolera	nce	
	> 100	0pF,F=1KHz,V=1.0±0.2Vrms					
	X7R/X5R/\	(5V/Y5U/Z5U					
	F=1KHz,V	=1.0V±0.2Vrms					
Dissipation	Same con	dition as capacitance.		NPO: 0	Cap 30pF, Q 1	000	
Factor				С	ap < 30pF, Q 40	00 + 20C	
			X7R/ X	5R:			
			Rate V	oltage 50V: 2	.5%		
			Rate V	oltage25V: 3.0%	% (C<1uF)		
			Rate V	oltage 16V: 3.5	% (C<1uF) ^{<note></note>}		
			<note>: For 0402 size, C=0.1uF, D.F 5%</note>				
			Rate Voltage 25V,16V: 5% (C 1uF)				
			Rate Voltage 10V: 5%				
			Rate Voltage 6.3V: 7%				
			Z5U: All 3.5%				
	_		Y5V/ Y5U:				
				Rate V	oltage 50V:	5%	
				Rate Voltage 25V: 7%			
			Rate Voltage 16V: 9%				
			Rate Voltage 10V: 12.5%				
Withstanding	DC voltag	e 250% of the rated voltage is	applied	No me	chanical breakd	own	
Voltage	between t	he terminations for 1 to 5 seco	onds, the				
	charge an	d discharge current is less tha	n 50mA.				
Insulation	Applying f	he rated voltage for 1 minute.		100G	or 500 F MIN	., whichever is sm	aller
resistance	,					,	
Temperature	With no el	ectrical load, using the capacit	ance				
coefficient		in step 3 as a reference. Then		Char.	Temp. range.	Cap. Change	
		rature sequentially from step 1		NPO	-55~+125	±30PPM/	
	Step	Temperature	_	X7R	-55~+125	±15%	
	1	25±2	-	X5R	-55~85	±15%	
	2	Min. operating temp.±3	-	Z5U	+10~+85	+22%~-56%	
	3	25±2	-	230 Y5V	-30~+85	+22%~-30%	
	4	Max. operating temp.±3	-	Y5U	-30~+85	+22%~-56%	
			II 1 3 U	-30~+03	+2270~-30%		
	5	25±2	_				

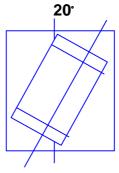
Item	Condition of test	Performance of requirement			
Solderability	Soldering temperature :235±5	At least 95% of the terminal surface must			
	Immersion time: 2±1 sec	be covered by new solder.			
Resistance	Preheat the capacitor at 120~150 for 1	C/C:			
to solderin	g minute. Immerse the capacitor in a eutectic	NPO: ±2.5% or 0.25pF max.			
heat	solder solution at 260±5 for 10±0.5	Whichever is larger. X7R/X5R: ±7.5% max.			
	seconds.				
		Y5V/Y5U/Z5U: ±20% max.			
	Measurement to be made after keeping at	DF、I.R、Withstanding Voltage : To meet			
	room temperature for 24±2 hrs of class	initial requirement.			
	1part;for 48±4 hrs of class 2 part.	No remarkable damage			
Temperature	Perform the five cycles according to the four	C/C:			
cycle	heat treatments listed in the following table.	NPO: ±2.5% or 0.25pF max.			
	Step Temperature Time	Whichever is larger.			
	1 Min. operating temp.±3 30±3 min.	X7 <mark>R/X5R</mark> : ±7.5% max.			
	2 25±2 2~3 min.	Y5V/Y5U/Z5U: ±20% max.			
	3 Max. operating temp.±3 30±3 min.	DF, I.R, Withstanding Voltage : To meet			
	4 25±2 2~3 min.	initial requirement.			
	Measurement to be made after keeping at	No remarkable damage			
	room temperature for 24±2 hrs of class				
	1part;for 48±4 hrs of class 2 part.				
Deflection	Bending 1mm at a rate of 1mm/s, radius	C/C:			
	jig340mm.Capacitance be measured at	NPO: $\pm 5\%$ or ± 0.5 pF Max.,			
	deflection 1mm condition and then the	Whichever is larger.			
	pressure shall be maintained for 5±1 sec.	X7R/X5R: ±10%			
	20 Pressure	Y5V/Y5U/Z5U: ±20% No remarkable damage			
	Speed: Imm/sec				
	Inn Deflection				
	45m 45m Supports				
Adhesion	Solder the capacitor to circuit board. Then	No removal of the terminations or other			
	apply a 1kg(10N) force for 10±1 sec., refer to	defects shall occur.			
	below figure.				
	← 10N Force				
	Note: For 0402 type, apply 0.5kg(5N)				
	Force.				

ltem	Condition of test	Performance of requirement
Damp heat	Apply the rated voltage for 1000+24/-0 hours at 40±2 and 90 to 95% RH.	C/C: NPO: ±7.5% or ±0.75pF max. Whichever is larger.
		X7R/X5R: ±12.5% max.
	Measurement to be made after keeping at	Y5V/Y5U/Z5U: ±30% max.
	room temperature for 24±2 hrs of class	Q for class 1or DF for class 2
	1part;for 48±4 hrs of class 2 part.	NPO: C 30pF, Q 200
		C < 30pF , Q 100+10/3 C
		X7R/X5R:
		Rate Voltage 50V: 3.5%
		Rate Voltage 25V,16V: 5% (C<1uF)
		Rate Voltage 25V,16V: 7.5% (C 1uF)
		Rate Voltage 10V: 7.5%
		Y5V/Y5U/Z5U: Rate Voltage 25V: 7.5%
		Rate Voltage 16V: 10%(C<1 µ F)
		Rate Voltage 16V: 12.5%(C 1 µ F)
		Rate Voltage 10V: 15%
		I.R: More than 1000 M or 50 F min.
		whichever is smaller.
		Withstanding Voltage :No failure
		No remarkable damage C/C:
Endurance	Apply 200% of the rated voltage for 1000+24/-0	NPO: ±3% or ±0.3pF max. Whichever is
	hours at the maximum operating temperature	larger.
	±3.	X7R/X5R: ±12.5% max.
		Y5V/Y5U/Z5U: ±30% max.
	Measurement to be made after keeping at	Q for class 1or DF for class 2
	room temperature for 24±2 hrs of class	NPO: C 30pF, Q 350
	1part;for 48±4 hrs of class 2 part.	10pF < C < 30pF,Q 275+5/2 C C 10pF,Q 200+10C
		X7R/X5R:
		Rate Voltage 50V: 3.5% Rate Voltage 25V,16V: 5% (C<1uF)
		Rate Voltage 25V,16V: 578 (C<1uF)
		Rate Voltage 10V: 7.5%
		Y5V/Y5U/Z5U:
		Rate Voltage 25V: 7.5%
		Rate Voltage 16V: 10%(C<1 µ F)
		Rate Voltage 16V: 12.5%(C 1 μ F)
		Rate Voltage 10V: 15%
		I.R: More than 1000 M or 50 F min.
		whichever is smaller.
		Withstanding Voltage :No failure
		No remarkable damage


PACKING

	Tape Size	Α.	B Min.	С	D Min.	E Min.	w	T Max.
13"Reel	8mm	330±2 (12.99± 60		13.0±0.5	20. <mark>2</mark>	1.5	9±0.5 (0.35±0.02)	2.5
	12mm	0.08)	(2.362)	(0.51±0.02)	(0.795)	(0.059)	13±0.5 (0.51±0.02)	(0.1)
7"Reel	8mm	178±1 (7.01±	50	13.0±0.5	20.2	1.5	9±0.5 (0.35±0.02)	2.5
	12mm	(7.01± 0.04)	(1.969)	(0.51±0.02)	(0.795)	(0.059)	13±0.5 (0.51±0.02)	(0.1)

STANDARD


Size	7 R	leel	13	Topo Width		
Size	Paper	Plastic	Paper	Plastic	Tape Width	
0402	10,000		50,000			
0603	4,000		15,000		9mm	
0805	4,000	3,000	10,000	10,000	- 8mm -	
1206	4,000	3,000	10,000	10,000		
1210		3,000				
1808		2,000				
1000		3,000			12mm	
1812		500				
1012		1,000				

	0402	0603	0805	1206	1210	1808	1812
	0.62±0.05	1.1±0.2	1.5±0.2	1.9±0.2	2.8±0.2	2.3±0.2	3.5±0.2
A	(.024±.002)	(.043±.008)	(.059±.008)	(.075±.008)	(.110±.008)	(.091±.008)	(.138±.008)
_	1.15±0.1	1.9±0.2	2.3±0.2	3.5±0.2	3.5±0.2	4.9±0.2	4.9±0.2
В	(.045±.004)	(.075±.008)	(.091±.008)	(.138±.008)	(.138±.008)	(.193±.008)	(.193±.008)
_	1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1
D	(.059±.004)	(.059±.004)	(.059±.004)	(.059±.004)	(.059±.004)	(.059±.004)	(.059±.004)
Е	1.75±0.1	1.75±0.1	1.75±0.1	1.75±0.1	1.75±0.1	1.75±0.1	1.75±0.1
	(.069±.004)	(.069±.004)	(.069±.004)	(.069±.004)	(.069±.004)	(.069±.004)	(.069±.004)
F	3.5±0.1	3.5±0.1	3.5±0.1	3.5±0.1	3.5±0.1	5.5±0.1	5.5±0.1
Г	(.138±.004)	(.138±.004)	(.138±.004)	(.138±.004)	(.138±.004)	(.217±.004)	(.217±.004)
P0	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1
PU	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)
P1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1	4.0±0.1
FI	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)	(.157±.004)
P2	2.0±0.05	2.0±0.05	2.0±0.05	2.0±0.05	2.0±0.05	2.0±0.05	2.0±0.05
F2	(.079±.002)	(.079±.002)	(.079±.002)	(.079±.002)	(.079±.002)	(.079±.002)	(.079±.002)
w	8.0±0.3	8.0±0.3	8.0±0.3	8.0±0.3	8.0±0.3	12.0±0.2	12.0±0.2
vv	(.315±.012)	(.315±.012)	(.315±.012)	(.315±.012)	(.315±.012)	(.472±.008)	(.472±.008)

COMPONENT ROTATION

Maximum Component Rotation

Component Center Line

Component Cavity Center Line

RESTRICTIVELY USED SUBSTANCES:

As the constituent table, no prohibited substances are used in Liean-Gimn parts.

We promised that Liean-Gimn deliver to Customer are free from any of the environmental hazardous substances. (The conditions and details are from customer's requirement and environment regulations.)

STORAGE CONDITION OF PRODUCTS:

Storage Environments.

Tape packing material are designed to withstand long-term storage, but they will degrade more rapidly in the presence of high temperature or high humidity, Therefore, the products must be stored in an ambient temperature of less than 40 with a relative humidity of less than 70%RH. Allowable storage period is within 12 months from the notice for final shipments.(As JEDEC Standard No. 48-A)

The Essence of a capacitor

THE SORTS OF DIELECTRIC MATERIAL FROM THEIR COMPONENTS.

- 1) Ceramic
- 2) Tantalum
- 3) Electrolytic Aluminum
- 4) Polymer , OS- Con etc.

Different type of capacitor has its characteristics and suitable for specific applications ,but NOT for unspecified.

HOW IS A MULTI LAYER CERAMIC CAPACITOR FORMED

A number of conductive electrodes lay-down(Pd / Ag / Ni / Cu) separated by an insulating dielectric sheet

CAPACITORS IN SERIES

- 1) 1/C total =1/ C1+1/C2+1/C3+ ...1/Cn
- 2) Respective current equally.

CAPACITORS IN PARALLEL

- 3) C total =C1+C2+C3+ ...Cn
- 4) Respective voltage is equally.

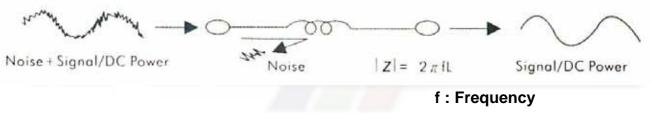
STANDARD UNIT OF CAPACITANCE IS INDICATED AS "F OR FARAD"

- μ F = micro Farad = 10⁻⁶
- nF= nano Farad = 10⁻⁹
- $pF = pico Farad = 10^{-12}$

VOLTAGE AND AC

As a general rule, AC must not exceed 10% to the rated DC value. If the AC voltage is too strong to the capacitor , the inner dielectric would heat-up and dissipation become an issue. Unusual AC spikes or surges will cause over heating and the dielectric would be ruptured or even on fire , This design rule should be strictly followed , particularly in the application above 1KHz switching frequency.

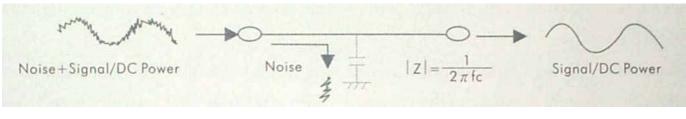
THE PARASITICAL INDUCTANCE


Four contributed inductances

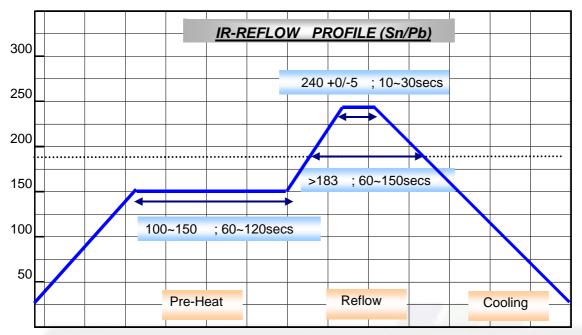
- 1) Component aspect ratio (chip length vs. width)
- 2) Circuit trace inductance
- 3) Via hole inductance
- 4) Packaging inductance

INDUCTIVE NOISE SUPPRESSION

When an inductor is inserted in series of a noise producing circuit, its impedance increases with frequency.

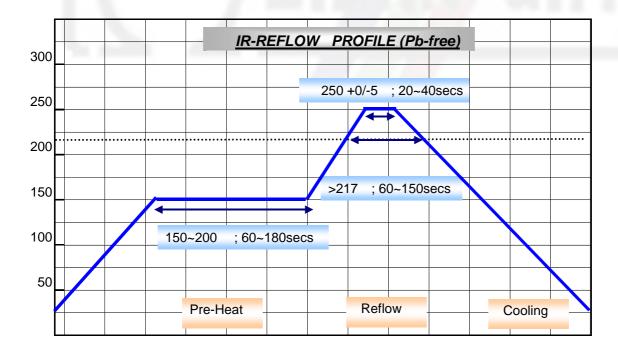

In this configuration, it is possible to attenuate and eliminate the noise components (high frequency components).

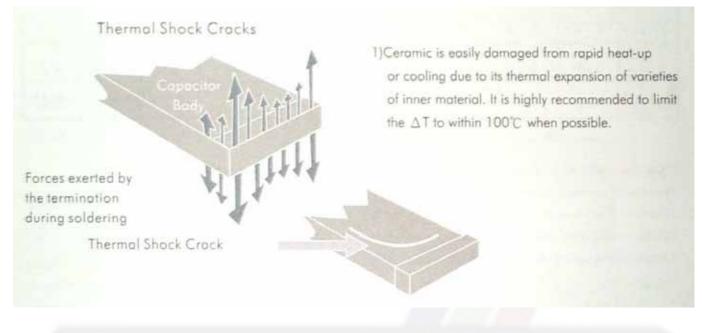
L : Inductance value


CAPACITIVE NOISE SUPPRESSION

When a capacitor is connected (bypass capacitor) to ground from a noisy signal line or power line, the circuit impedance decreases as the frequency increases. Since noise is a high frequency phenomenon, it flows to ground. If a capacitor has been connected to ground, there by making it possible to eliminate noise.

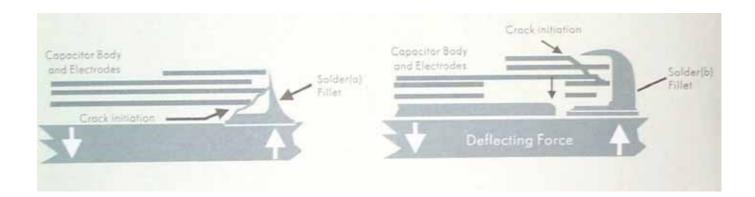
f : Frequency c : Capacitor value


Soldering Recommendation

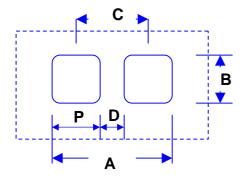

Typical Profile Band for Sn63/Pb37 Alloy Solder Paste

Soldering Recommendation

The IR-Reflow profile for lead free part.



THERMAL SHOCK


MECHANICAL DAMAGE

- 1) Board flexure cracks are common observed, especially manual breaking process is involved or large degree of PCB warpage exists at machine level handling.
- 2) The flexure crack can be eliminated by putting sensitive parts away from the high stress area. Position and orientation of the parts should be very important.

SOLDER PAD DESIGN GUIDES

(in case more details required, please refer to IPC 782 A)

								•		
	IR Reflow						W	ave Solo	ler	
Chip	Α	D	В	Р	С	Α	D	В	Р	С
*0402	1.70	0.50	0.50	0.60	1.10			N/A		
*0603	2.30	0.70	0.75	0.80	1.50	3.10	0.70	0.75	1.20	1.90
0805	3.00	1.00	1.25	1.00	2.00	4.10	1.00	1.25	1.50	2.50
1206	4.00	2.00	1.60	1.00	3.00	5.00	2.00	1.60	1.50	3.50
1210	4.00	2.00	2.50	1.00	3.00	5.00	2.00	2.50	1.50	3.50
1808	5.60	3.60	2.00	1.00	4.60	C		N/A		
1812	5.60	3.60	3.00	1.00	4.60	N/A				

Unit: mm

Note:*to minimize tombstone for small chips 0402, 0603, four methodologies can be used

1) make all corners of the pads to round shape as above figure

2) Reduce the amount of solder paste using, a stencil opening which is less then the pad area

- 3) 130~160 pre-heating temperature for more than 1 minute
- 4) control the pad size as small as possible

Terminology

CAPACITANCE:

 $C = \epsilon KA/t$

CAPACITANCE TOLERANCE

is the amount of the actual capacitance allowed to deviate from the nominal value listed . For example , if you order a capacitor with a nominal of 1000pF and a tolerance of plus or minus 10%, you may get an actual value of 900 to 1100pF (at 25)

DISSIPATION FACTOR (DF OR TAN δ)

The amount of energy loss compared to that originally applied. DF is a measurement of how effective a capacitor is , DF =ESR/Xc

IRMS

Within a given temperature rise (10-20, typical), the maximum allowable AC to flow through a capacitor, the higher Irms the better heat dissipation of the capacitor. Irms= P/ESR

ESR

is accidentally built to non-ideal capacitor due to the material of inner electrodes and terminations . ESR = DF/ 2π fc

ESL

can also exists in non-ideal capacitor due to the aspect ratio (length vs. width of current path)

IZI

Is a combination of natural resistance and inductance properties . The total of these resistances is known as impedance. The amount of impedance to the current means determine it will pass or be blocked by the capacitor.

RATED VOLTAGE

All capacitors are rated for the amount of voltage which they can tolerate. By definition , voltage is the amount of pressure or force exerted on the current , to make the current move.

QUALITY FACTOR

Or "Q", is the reciprocal of DF. if Q is high , the capacitor is considered as more effectively.

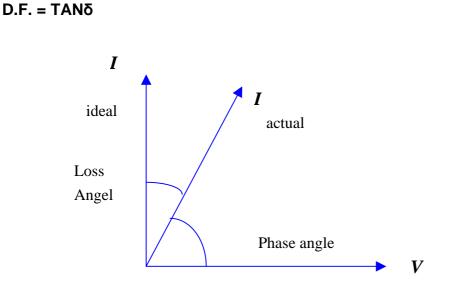
I . R.

Insulation Resistance comes from the dielectric and outer coating. If any, it is the only real resistance perceived by direct current, some DC leakage through the capacitor can occur. It depends on the capacitor's rating for IR. Ceramic Capacitors have relatively large IR ratings (1G or higher typically) than other dielectrics capacitor.

ALTERNATING CURRENT

AC is influenced by three resistances-ESR , inductance reactance XL and capacitive reactance XC . As a general rule , AC should not exceed 10% heat up and dissipation will become a problem ,this is a particular true for above 1KHZ.

SELF RESONANT FREQUENCY


When a capacitor reaches a certain frequency where the capacitive reactance XC and inductance XL cancel each other out, when XC and XL cancel, the only impedance left is ESR and the current easily passes along in the circuit.

DIELECTRIC STRENGHT

POWER FACTOR = COS

When a rated voltage is given in percents form and defined the upper limits of voltage. The ceramic dielectric can tolerate without rupturing. It is a test measure only and is applied to assure reliability and integrity of the capacitor . It does not guarantee proper capacitor performance and should not be used to choose a capacitor . Except for rated voltage being used.

PHASE ANGLE

OR

SINδ